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Radia t ive -conduc t ive  heat t r ansmiss ion  has been studied theoret ical ly in a plane layer 
with a l inearly varying boundary temperature .  It is shown when the regular  mode of the 
second kind prevails .  An exact  solution is obtained to the quas is teady-s ta te  equation for 
this stage. The e r r o r  in the approximate descript ion 9 f the temperature  is evaluated. 

As is well known, in a medium with a l inear ly  varying boundary temperature  there is eventually 
established a regular  mode of the second kind, charac ter ized  by a constant ra te  of temperature  change at 
all points in the medium [1]. The theory  of this mode is based on the solution of the Four ie r  equation and, 
therefore ,  its applicability is limited to substances in which energy is t ransmit ted by conduction only. The 
application of this theory to semit rans iucent  mater ia ls  in which the radiative mechanism of heat t r ans -  
miss ion  operates  along the conductive mechanism is not justified, since here  the tempera ture  field is de- 
scr ibed by a more  general  equation of r ad ia t ive -conduc t ive  heat t r ansmiss ion  [2]. At the same time, 
methods of analyzing regular  modes in thermophysics  have been sufficiently well developed, they offer 
cer ta in  unquestionable advantages and their application to semi t rans lucen t 'ma te r ia l s  is dictated by prac t i -  
cal considerat ions.  In this ar t icle  we will analyze theoret ical ly  the regular iza t ion of the t ransient  r ad i a -  
t i ve -conduc t ive  heat t r ansmiss ion  in a plane layer the tempera ture  of whose boundary surfaces  is a l inear 
function of time. As far  as we know, this p rob lem has not been dealt with before. 

We consider a plate of semit rans lucent  mater ia l  and thickness 2l (Fig. 1). In di rect  thermal  contact 
with its sur faces  are opaque but otherwise identical bodies (heaters) which ensure a tempera ture  var ia t ion 
of the T s = T i + bT kind at the boundaries.  The initial t empera ture  distr ibution in the layer  is a given s y m -  
met r ica l  function f(x). The ref lect ion coefficient at the boundaries R v is defined by the Fresne l  formulas.  
The thermophysical  proper t ies  of the mater ia l  A and c 7 as well as its spect ra l  optical charac te r i s t i cs  
n v and k v are assumed known. It has been established ea r l i e r  that the tempera ture  field is insensitive to 
tempera ture  variat ions of n v and, therefore ,  the relat ion nv(T ) will  be ignored. The relat ions A(T), c(T), 
and kv(T ) will be accounted for  as follows. Since the tempera ture  difference across  the layer  is much 
smal le r  than the absolute tempera ture ,  hence one may consider  that dA/dx = d c /  dx = dkv /dx  = 0 and 4, c, 
k v va ry  with the boundary tempera ture :  A = A(Ts) , c = C(Ts) , and k v = kv(Ts). 

The tempera ture  field in a plane layer  is descr ibed by the equation of rad ia t ive -conduc t ive  heat 
t ransmiss ion:  

OT 
div(q + E ) =  - -  c7-~-,  (1) 

where,  in addition to the thermal  flux vec tor  q, we introduce the radiation vector  E, the lat ter  being a non- 
l inear functional of the tempera ture  distr ibution T(x). The explicit express ion for E depends on the nature 
of the ref lect ion at the boundaries [2]. Without loss in generali ty,  it may be assumed that the reflections 
are predominantly of the m i r r o r  kind. Other  possible kinds of ref lect ions are analyzed analogously (see 
[2]). With a change of var iables  to ~(x) = T s - T(x) we obtain 

(T" 02~ O ~ E = - - T c ( T s ) ( b - - - ~  ). (2) 
S) ~x~ + Ox 

Integrat ing f rom 0 to x, by vir tue of s y m m e t r y  in the tempera ture  field, we find 
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Fig. 1 

Fig. 1. Schemat ic  d i ag ram of the problem.  

Fig. 2. T e m p e r a t u r e  dis t r ibut ion during the r egu la r  s tage (H 
= 2 cm, b = 800 deg]h,  T = 1100~K): 1) exact  sotution to Eq. (i0); 
2) pa rabo la  AT (1 -- xa/12). 

O00x + E (x) - -  E (0) = - -  cybx -i- c? ~ [. ~ (~, "0 d~ . 

A subsequent  in tegra t ion  f r o m  - i  to x and the boundary condition a ( - l )  = 0 yield 

s (x, w) ~, ; [E (~, -c) - -  E (0, T)] d~ = - -  cgb (x2 2-- 12) 

- - I  

where  function Kl(x , ~) is  define6 by the equal i t ies  

+ cv ~ -  j ~ (~, T) K~ (x, ~) cl~, 
- - I  

lx 
l - -~ ,  - - l  < ~ -<- O, 

K~(x, ~)=  - - L  O < ~ < x ,  

O, x ~ . C l .  

We will use  the e x p r e s s i o n  der ived in [3] for  the radia t ion  vec tor .  T rans fo rma t ions  analogous to those in 
[4] and the s y m m e t r y  of the boundary conditions lead to the re la t ion  

S[E(~, " 0 ~ E ( 0 ,  "0]d~=2~t i i n~{IB(V'  T s ) - - t B [  v' T(~)]} [K(x,  ~, v) - -  h,*(--l, ~, v)] dvd~, 
--I  --1 v~O 

(a) 

where  

7[/'2 - -  2lev~l 

t K (x, ~, ~') = Ea (k, ]x - -  ~1) + 2 R, sin q~ cos cp e ~~ 
4k~ l  

q~=O [ - -  R 2 e  cos~p 

4kvl  

(4) 

(s) 

k v = kv(Ts) and Ea(z ) is a t h i r d - o r d e r  integroexponent ia l  function. Inser t ing  (5) into (3), we obtain a non- 
l inear  in tegrodi f ferent ia l  equation descr ib ing  the t e m p e r a t u r e  dis t r ibut ion in the l aye r  in the genera l  f o r -  
mula t ion  of the problem.  As has been mentioned ea r l i e r ,  the s t ipulat ion that ~({) << T s holds at eve ry  
point in the plate,  so  that  a l inear iza t ion  of exp res s ion  (5) cannot s ignif icant ly  influence the calculat ion 
of the t e m p e r a t u r e  field. In this case  we a r r i v e  at the following l inear  in tegrodi f ferent ia l  equation: 

a~ 

i {!' l (Ts) e (x, "0 w 2~ 
--l ~ 0  

T~ 
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. 2 + Vc (Ts) q (~, ~)/(1 (x, ~) d~. (6) 
--l 

The solution to this equation will be sought in the f o r m  ~(x, ~-) = ~l(T)~2(x). Inasmuch as ~(x, T) is a s y m -  
m e t r i c a l  function for  e v e r y  T, we will approximate  ~2(x) by a pa rabo la  1 - x 2 / l  2. Inser t ing  ~l(~)(1 - x 2 / l  2) 
into Eq. (6), we see  that this  equation is au tomat ica l ly  sa t i s f ied  for  x = • l .  We requ i re  now that the chosen 
function sa t i s fy  this equation also at x = 0 (the collocation method). It will be shown subsequent ly  that the 
e r r o r  of the thus approximated  solution is insignificant.  We have 

--1 V = 0  

l 

><[K(O,~, ~)--t~(~l, ~, v)]dv}d~=Teb~-+ -~w J ( 1 -  l ] (O,~)d~ 
--I 

and, a f te r  a few t r ans fo rm a t i ons ,  the following different ia l  equation for  de termining  the function #1 (~'): 

where  

(~) = 

while c, ~, kv, 

d ~  (T) = (v ('0 o~ ('0 + ~ a (7) 
d'r 5 ' 

5P7c (Ts) " -L ~=0 

and 0IB/0T depends on the t ime impl ic i t ly  through T s. Soiving (7), we find 

6 
Ol(~)=f(O)exp ( y (D(y )dy )+-g-b .  exp(~(I)(~)d~ )dy. (9) 

0 0 y 

It  is in te res t ing  to note that, when k v ~ % K(x,.~, v) ~ 0 for  eve ry  x. Then (9) yields a usual express ion  
for  an opaque medium (discounting the re la t ions  )t(Ts) and c(Ts)): 

12a 12a 

* b l2  ( l - - e  51z'~ ), O~ ('0 = f (0) e- ~ir* + -~a 

as ~ i n c r e a s e s ,  becomes  the wel l -known t e m p e r a t u r e  dis t r ibut ion in the r egu la r  mode of the second which, 
kind: 

bl~ _ -~- 
o* ('0 = - ~  1 

In order to explain the dynamics of the temperature field when both heat-transmission components 
are effective, formulas (8) and (9) were calculated on a computer with various values for the system param- 
eters. These calculations have shown that ~i (~') does not, generally, tend towards a constant value, but the 
derivative ~l(-r)/~T becomes much smaller than b and remains so for a long time period during which the 
specimen is heated by 500-700~ Unlike in opaque bodies, where the irregular mode is exponential in 
character, in semitranslucent media the function ~i(~-) is of the extremaI kind: the first stage of the process 
comes to an end after the maximum value has been reached. The heating of the layer from various initial 
temperature distributions does not exceed 100~ during this stage. The subsequent departure of ~i/~1- 
from b does not exceed 2%. For this reason, one may assert within this accuracy that a regular mode pre- 
vails in the layer. The values of ~I (~') at various instants of time ~- are given in Table 1 for a plate of grade 

KV quartz glass 2 cm thick (T i = 500~ b = 800 deg/h). 

Having established that the mode is regular, one can significantly simplify the mathematical descrip- 
tion of the heat transmission in this stage. Assuming 0~/0T = 0 in Eqs. (3) and (6), one can replace the 
integrodifferentia[ equations by integral equations. 
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TABLE 1. Maximum Tempera ture  Difference as a Function of 
Time (b = 800 deg /h ,  H = 1 cm) 

SeC 0 60 120 180 240 300 ~ 30 420 480 540 

~ O 13,1 17,65 1 8 , 8 3  1 9 , 6 6  1 9 , 8 1  19,85 19,83 19,80 I9,78 

SeC 

~c 

600 

19,74 

660 720 

19,69 19,64 

I620 1880 

18,65 18,59 

I740 2180 

18;52 18,07 

2220 2280 

18,09 i7,93 

Let us fur ther  analyze the l inearized equation of r ad ia t ive -conduc t ive  heat t r ansmiss ion  in the r egu-  
lar  mode. With the aid of (6) we find 

In our case Ts0- ) is a pa ramete r  of the equation which determines  the values of OIB/OT , ~, c, and k. In 
other words,  the t empera tu re  distribution in the layer  based on (10) r e f e r s  to a definite instant of time and, 
consequently, to a specific value of Ts(r) which affects 6(x) implici t ly through ~, c, kv, and 8IB/3T. For  
this reason,  Eq. (10) may be considered a quas is teady-s ta te  equation. It has been solved on a computer  by 
the method of quadratures .  An application of the Simpson and of the Markov rule has shown the latter to be 
preferable .  As the number of nodes N was increased,  the resul tant  t empera ture  distr ibution stabilized 
so that, after N = 16, a fur ther  increase  of N had almost  no effect on "~(x). 

Curve 1 in Fig. 2 represen t s  the exact solution to Eq. (10). In order  to s implify the calculation, we 
used the "gray"  approximation with function k rep laced  by the mean spec t ra l  value k. Such a substitution 
was inconsequential  here ,  since the propert ies  of the equation and the method of solution were of chief 
interest .  In order  to obtain specific resul ts  for var ious  semit rans lucent  mater ia ls ,  however,  it would be 
n e c e s s a r y  to consider  the select ivi ty of optical charac te r i s t i c s  - as has been shown ea r l i e r  [3]. 

Curve 2 in Fig. 2 is the approximating parabola  AT(1 - x 2 / l  2) where AT -- T s --T(0).  As can be seen, 
the depar tures  of d(x) f rom the parabola are  insignificant. The same resul t  was obtained in an analysis of 
~(x) at var ious instants of time. Thus, it has been established that the solution of the transient  equation (6) 
by the collocation method, as shown here,  contains a small  e r ro r .  

If this approximation is used in Eq. (10) and, besides,  x = 0 is assumed, then one a r r ives  at the fol-  
lowing relat ion: 

A T :  bl2 2n AT n2 ( OIB ) 1 - -  l 2 [K(x, ~, ~ ) - - K ( - - l ,  ~, v)]d~ dr, (11) 
2a ac? ~' \ OT ]rs 

'v~O 

f rom which follows the equality 

bl 2 2~ 
a - -  2AT c? [ (R, T, kv), (12) 

where function I(R, T, kv) denotes the integral  factor  in (11). Relation (12) can be used for determining 
the thermal  diffusivity of semit rans lucent  mater ia ls  on the basis of the regular  mode of the second kind. 

A 
6/ 

C 

T 
n 

k 
R 
q 

N O T A T I O N  

is the thermal  conductivity; 
is the thermal  diffusivity; 
is the specific heat; 
is the density of the mater ia l ;  
is the re f rac t ive  index; 
is the absorption coefficient; 
is the ref lect ion coefficient at the boundary; 
is the thermal  flux vector ;  
is the radiat ion flux vector ;  
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IB(V , T) 
b 
2l 
E 3 (Z) 
N 
x, 
T 

is the Planck function; 
is the ra te  of t empera tu re  change at the surface;  
is the layer  thickness; 
is the t h i rd -o rde r  integroexponential  function; 
is the number of nodes in the quadrature  formula;  
are  the space coordinates;  
is the t ime coordinate.  

S u b s c r i p t  

p r e f e r s  
i r e f e r s  
v r e f e r s  

to the sur face  t empera tu re ;  
to the initial t empera tu re ;  
to spec t ra l  quantit ies.  

S u p e r s c r i p t  

* r e f e r s  to an opaque medium. 
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